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Summary: Synthesis of a model A/R ring subunit of eremantholide A (1) is described 

Our interest in the development of a general synthetic protocol for eremantholide A (11, a member of a small 

group of modified germacran olide sequiterpene lactones isolated by LeQuesne and coworkers, was stimulated both by 

the significant anti-tumor activity exhibited by 1 and its congeners and the stereochemical issues implicit in a 

synthetic approach to this novel class of natural substances. X Since five of the six chiral centers present in 

eremantholide A (1) reside in the dioxabicycld3.3.Olcctanone system which comprises the A/B ring subunit of 1, we 

initially addressed the problem poeed by this sterecchemical array by undertaking the construction of the model 

bicychc lactone 2 described herein. 

1 

Our retrosynthetic analysis (Scheme 1) of 2 (and 1) suggests that the relative configuration of the C, ‘ center 

(eremantholide A numbering, a hemi-ketal, is very likely under thermodynsmical control (the isopropyl group 

residing on the less sterically encumbered convex face of the bicyclic system). Thus, we planned to employ ketone 

3 as the key precumor to model lactone 2 preparation of 3 rquires that the u and p sidechains be ds disposed 

on the 7 lactona This arrangement can be readily realimd v&i the appropriately ordered sequential introduction of 

the acyl sidechain and methyl groups at C, 1. ’ Alkylation of the precursor @-keto ester should afford the desired 

stereochemistry at C, , as the result of the expected introduction of the electrophile anti to the sidechain at C ,. 

The problem is now reduced to the construction of lactone 4 which should be readily accowible vf.u conjugate 

addition of an appropriate acyl anion quivalent unti to the C, substituent (eremanthollde A numbering) in 

butenolide 5. Roth optical antipodes of 5 are readily available a and conjugate addition of a variety of nucleophiles 

to 5 has been shown to be highly stereosele-ctive., providing exclusively the desired tra.n.r adducts. ’ Thus, our 
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initial goal was to identify one or more acyl anion equivalents which could function in the intended manner. 

SCHEME1 

A survey of the addition of potential acyl anion equivalents to (715 was conducted which revealed that only 

certain systems possessed the correct combination of nucleophilicity and basicity for successful addition.’ * ‘ We chose 

to investigate the two most promising methods which were use of protected cyanohydrins and vinyl cuprates (eg. 

model systems 6 and 7). 

JX ,Ico 

6 7 M= Cu-zC,H, 

Blocked cyanohydrin 6, readily available from 3_methylbutanal,’ upon treatment with IDA was converted to 

the corresponding lithium anion which smoothly underwent the required conjugate addition to (715 at -78°C 

(Scheme 2). The resulting enolate could be trapped In si.tu with isobutyryl chloride to give the protected /.I-keto 

lactones 8 which appeared to be a single epimer at C, (66%). ‘ To introduce the sterecchemistry at C I I, the 

mixture of fl-keto lactones 8 was then methylated by exposure to NaHKH,I in DMF. Deprotection of the resulting 

mixture of alkylated lactones afforded a single stereoisomeric diketo lactone 3 (R=iPr) in 58% overall yield (from 81, 

which confirmed the stereochemical homogeneity of the preceding intermediates at C , and C X 1. ’ 

Lactone 3 (R-C ,H I ,) was also accessible vfu addition of an organocuprate. Exposure of (x)5 to the mixed 

cuprate reagent 7 provided ‘the expected adduct 9 (92%), as a single diastereomer. In this case, the intermediate 

enolate could not be efficiently trapped In s&u. However, acylation proceeded smoothly upon treatment of 9 with 

IDA at -78’C followed by quenching with isobutyryl chloride to afford the expected 6-keto lactone (72%). 

Methylation of this lactone as before with NaH/CH,I produced a single stereoisomeric alkylated p-keto lactone 10 

(87%) which was converted to the analogous diketone 3 (R-C ‘HI ,> via oxonolysis in 98% yield. 

Completion of our model study now required stereoselective reduction of the C. carbonyl group. 

Unfortunately, attempts to reduce this ketone with a variety of hydride reducing agents under a variety of reaction 

conditions failed, Apparently the bulky substituents at C, and C, I render the C. ketone effectively inaccessible 

to nucleophilic reducing agents relative to the other carbonyl groups. 1 o However, this problem was readily 

circumvented by reordering the steps. 

Lactone 9 underwent oxonolysis followed by reduction with NaBH, to afford alcohols lla and llb (809i) as a 

1:l mixture of C. epimers (Scheme 3). No attempt was made to optimixe the selectivity of reduction in this model 

system 1 1 The alcohols lla and llb were separated and both epimers were carried through the remainder of the 

projected sequence to 2 (R-OBm R-C L H 1 1) at which time the stereochemical assignments for lla and llb were 

established (v&&s Infra>. After protection of the hydmxyl group as the methoxymethyl (MOM) ether by treatment 
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a) 6 (1.1 equiv), IDA (1 equiv), HMPA, THF, -78eC then (CH,),CHCOCL -78” + rt, 3h; b) NaH (1 @Wiv), 
CH ,I (xs), DMF, 40°C, 16h; C) Amberlyst-15, THF, rt, 12 h, then 5% NaI-ICD ,) rt 3h; d) 7 (2 e¶uiv) 3 - 
(4 quiv), Et ,C, -78OC, 2h then 5 and TMSCI (2 equiv) added; e) IDA (2.5 equiv), ‘IHF, -78’C, lh, then 
(cH,),cHCCCI (3.0 quiv), -20°c, 1% f) NaH (1.5 equiv), CH,I (x.9, THF, O” + 65OC, 8h; g) 0, (=+ 

CH,Cl,, -78’C, 0.54 then (CII,),S (x8), -78’C + rt, 12h. 

of lla” with CH,(OCH,),/p,O, (73%), i ’ the resulting lactone 12 was then sequentially C-acyIated with 

isobutyryl chloride and methylated at C, r as previously described (Scheme 3) affording II-keto lactone 13 in 56% 

overall yield (from 12). FinaUy, the A/E ring subunit was completed (Scheme 3) by treatment of 13 with Th4SBr 

which selectively cleaved the MOM ether providing the desired lactol 2 (R-C ‘H 1 I ) in 62% yield. ’ ’ 

Confirmation of the structural and stereochemical assignments for 2 (R-C ,H I ,), and thus lla and succeeding 

intermediates, was obtained from difference NOE studies. Irradiation of the C, 1 methyl group (6 1.31) of 2 

SCHEME 3a 
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9 R-C,H,, lla,b R=C ,H, 1 

12 R-C,H,, 13 R-C,H,, 2 R-C,H, 1 

aReagentg 

a) 0, &a), CH,Ci,, -78’C, 0.25h, then (CH,),S (x8), -78 + O’C, 12h; b) NaBH. (1 equiv), THFCH,OH 
(9:1), O’C, 0.5lu c) CH,(OCH,), (xs). P,O,. CH,Cl,, rt, 6h; d) IDA (3 equiv). ‘II-IF, -78’C, lh, then added 
to (CH ,) ,CHCCCl (6 equiv), O’C, 2h; e) NaH (1.5 equiv), CH,I (ss), DMF, -20°C, 4h; f) TMSEr (2 quiv), 
4A MolecuIar Sievea, THF. -60°C, 30 min. 
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resulted in an NOE enhancement of the signals for the protons at C, (6 2.41) and the C, ‘ isopropyl methine. 

Furthermore., irradiation of the protons at C, (6 4.60) or C, (6 4.18) resulted in NOE enhancements for the C , 

proton and C, protons respectively. These results unequivocally establish the syn relationships of the C, proton, 

C II methyl, and C, ‘ isopropyl groups as well as the CL and C, protons fully supporting the structural and 

stereochemical assignments for 2 (R-C ‘H 1 1 1. 

The results of this study have defined a protocol for construction of the eremantholide A/B ring system with 

a high degree of stereochemical control at 4 of the key stereogenic centers. Efforts are currently underway to apply 

this strategy to the synthesis of eremantholide A (1) itself and the results of these studies will be forthcoming. 
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2: 7.30 (m, 5H>, 4.60 (d, J-12 Hz lII>. 4.60 e 
analyses. ‘H NMR Dam (8 at 300 MHz, CDCl,): 

1H). 4.52 (d, J-12 Hx, H-I), 4.18 Gn. III). 3.57 (m. 2m1), 
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For example, treatment of 3 (R-C ,H 1 Xl with LiAl(OtBu) ,H resulted in reduction of the 7 lactone. 

In the systems required for 1, we hoped to utilixe chelation control by a /I oxygen atom absent in the model 
systems to effect stereoselective reduction of the C. ketone. 

only the epimeric series corresponding to 2 (and 1) is depicted in the interests of clarity. 
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